ROVATOK

FELADVÁNYOK

BETŰTÉSZTA

ASSZOGRAMMA

JÁTÉKOK

KVÍZJÁTÉK

FÓRUM

REGISZTRÁCIÓ

A mai nap képe

nap képe

Küldj be te is képet!
Képeslapküldés

Keresés az oldalon:

Friss fórum:
Heti kvíz (1313)
csak úgy.. (4592)
fejlesztések (1463)
Játékok (2306)
Feladványok (17720)
Betűtészta (3243)
Szívből szóló versek (1254)
Tőlem Nektek (12540)
A nap képe (4314)
játékos javítás (1701)
Ki mondta? (301)
asszogramma (1914)
AI (9)
Segítséget kérek, köszönöm (2536)
Admin (427)

 > Még több fórum

A hét kérdése:

Jelentkezz be a heti kérdéshez!

 > régebbi kérdések
 > kérdés beküldés

Legolvasottabbak:
IQ teszt
Egy angliai egyetem kutatásai
Varázsgömb
Hipnózis
Agyscanner

Ödönke számítógépe
2015-04-10 6:55
Egész számok
Közepes, beküldte: csibe08*, szerkesztő: VenczelGy
Feladatunkban éljünk az alábbi egyszerűsítésekkel:
a = osztandó
b = osztó
/ = egészosztás (tehát 7/3 = 2: az osztást a szokásos módon kezdjük, de a tizedesvesszőnél megállunk )
mod = osztási maradék (tehát 7 mod 3 = 1)

Ödönke számítógépe (és még sok más számítógép is) az osztási maradékot úgy képzi, hogy az osztandó értékéből kivonja az osztandó és az osztó egészosztással kapott értékének és az osztónak a szorzatát.
A fenti egyszerűsítésekkel élve: a mod b = a - ((a/b)*b)

A fenti számítási módszert és az egész számokat vizsgálva Ödönke azt állítja, egy "x" szám paritását (ahol x nem nulla) meg tudjuk állapítani az "x mod 2" maradékos osztással, mégpedig az alábbi módon:
- amennyiben a fenti számítási módszer eredménye 1, úgy x-ről kijelenthetjük, hogy páratlan
- minden más esetben x-ről kijelenthetjük, hogy páros.
Ekkor lép a képbe Etelka, aki azt állítja, hogy Ödönke ismét csak téved, és ezzel a módszerrel a számok körülbelül huszonöt százalékának paritását tévesen állapítaná meg Ödönke.

Kinek van igaza, és persze miért?

A beküldési határidő lejárt, a regisztrálatlanul beküldött új megoldásokat már nem értékeljük!

Új hozzászólás beküldése (már csak regisztráltan beküldött megoldást értékeljük)


A Ödönke számítógépe című feladvány statisztikája:
A feladványt eddig 5884 felhasználó olvasta, és 60 megoldást küldtek be rá.
A feladványt 27 látogató fejtette meg helyesen.
Akik helyes megfejtést küldtek be (vastaggal aki határidőn belül):
Anikóka, bolnyi, deva55, gabusfrici, grisenyka, hata, horsa, kadar, kkanya, kropi, Kuala13, kuliver, kuvaszkusz, lupovero, MANO, Mesti, mihtoth, mutterka, nklari, ocotillo, onix, padat, pasztoi_istvan, rizsesz, Sandviking, szmoni65, Tucatka
Ajánld a feladványt másoknak:
Címzett neve: E-mail címe:


Ha be lennél jelentkezve, itt megnézhetnéd a beküldött megoldásokat


Felhasználónév:

Jelszó:

Jelszóemlékeztető

Friendshack – Online party játékok | Társasjáték bárhol


Friss feladványok:
 Gondoltam egy címre
 Számoljunk velük ( korrigálva)
 Nyitányok
 Mit csinál ?
 Remélem, a végén beugrik
 Hol jártam? 2.
 X és Y

Hirdetés

© 2017 DigitalAge

impresszum  ::  médiaajánlat  ::  segítség  ::  ajánló  ::  kezdőlapnak  ::  kedvencekhez   RSS